当前,人类活动已成为全球环境变化的主要驱动力,合理预测中国人口的发展趋势,对于预测和理解中国未来的城镇化格局,调节中国城市能源供给平衡,控制能源排放,实现中国城市低碳转型等都具有十分重要的指导意义。在此背景下,能源基金会于 2019 年支持清华大学建筑学院龙瀛团队,开展“中国未来城市人口分布情景分析”研究,对中国的城市人口,在省域、县域等层面上的分布进行分析与预测。
Currently, human activities have become the main driving force for global environmental change. Reasonably predicting the development trend of China’s population has significant guiding significance for predicting and understanding the future urbanization pattern of China, regulating the balance of energy supply in Chinese cities, controlling energy emissions, and achieving China’s urban low-carbon transformation. Against this background, the Energy Foundation supported the Long Ying team of the School of Architecture, Tsinghua University in 2019 to conduct research on “Scenario Analysis of China’s Future Urban Population Distribution,” analyzing and predicting the distribution of urban populations in China at the provincial and county levels.
我们对现有的人口预测研究进行了梳理,发现目前的相关研究多以历史梳理、现状分析为主,在情景分析、空间尺度和精度上都略有不足。在此基础上,我们将城市区位、聚集度等多种情景条件引入,在公里网格尺度上对未来中国的人口分布进行了多情景下的预测。该研究的方法可以简要概括为两步:以线性回归为核心的市辖区层面上的人口总量与城镇化率预测;以土地利用变化和LandScan 人口耦合数据为核心的公里网格尺度的人口判定。我们最终获得了多种情景下的中国未来人口公里网格分布地图。研究发现,未来的中国大城市依然存在很大的人口增长压力,而中西部城市将是中国未来城镇化的主要战场。
We reviewed existing population forecasting research and found that current relevant studies mainly focus on historical reviews and current situation analysis, with some deficiencies in scenario analysis, spatial scale, and accuracy. Based on this, we introduced multiple scenario conditions such as urban location and concentration and predicted the future population distribution in China at the kilometer grid scale. The method of this study can be briefly summarized into two steps: predicting the total population and urbanization rate at the municipal level using linear regression as the core, and determining the population at the kilometer grid scale based on land use changes and LandScan population coupling data. We finally obtained kilometer-grid distribution maps of China’s future population under multiple scenarios. The research found that China’s large cities will still face significant population growth pressure in the future, while central and western cities will be the main battleground for China’s future urbanization.
数据下载地址为,欢迎大家引用与交流:https://figshare.com/articles/figure/___Data_of_Population_Scenario_Analysis_for_China/22277677/2
(复制至浏览器搜索或点击文末“阅读原文”查看)


【项目信息】本数据来自于能源基金会资助项目《中国未来人口分布情景分析》(Population Scenario Analysis for China)
【数据信息】本数据为项目2.0版本数据,已经针对1.0版本进行了大幅度更新
【作者信息】
龙 瀛 清华大学建筑学院,长聘副教授,博士生导师
王新宇 清华大学建筑学院,博士研究生
李文越 清华大学建筑学院,博士后
孟祥凤 清华大学建筑学院,博士后
【项目资助号】G-1909-30260
【项目日期】2019.08.01 – 2020.05.31
【研究报告与地址】详见https://www.efchina.org/Reports-zh/report-lccp-20210207-3-zh
【引用】龙瀛, 王新宇, 李文越, 孟祥凤. 中国未来人口分布情景分析(Population Scenario Analysis for China)[EB/OL]. https://www.efchina.org/Reports-zh/report-lccp-20210207-3-zh, 2021-02-07.
【Project Information】 This data is from the “Population Scenario Analysis for China”, a project funded by Energy Foundation.
【Data Information】 This data is version 2.0 of the project, which has been substantially updated for version 1.0.
【Author Information】
Long Ying, Associate professor, doctoral supervisor, School of Architecture, Tsinghua University
Wang Xinyu, PhD Candidate, School of Architecture, Tsinghua University
Li Wenyue Postdoctoral Fellow, School of Architecture, Tsinghua University
Meng Xiangfeng, Postdoctoral Fellow, School of Architecture, Tsinghua University
【Project Grant No.】 G-1909-30260
【Project Date】 2019.08.01 – 2020.05.31
【Research Report and Address】 Available at https://www.efchina.org/Reports-zh/report-lccp-20210207-3-zh
【FUNDING】 Energy Foundation – Grant Number:G-1909-30260
更多相关的研究工作详见BCL的【Population China】单元链接:
http://www.beijingcitylab.com/projects-1/4-population-china/
BCL北京城市实验室“中国人口” (Population China)项目还包括《在共享社会经济路径下,预测2020-2100年全球1公里网格的人口空间分布情况》、《中国未来人口分布情景分析》、《中国乡镇人口(2000-2010年)》等研究内容,欢迎探索。
更多内容,请点击微信下方菜单即可查询。
请搜索微信号“Beijingcitylab”关注。

Email:BeijingCityLab@gmail.com
Emaillist: BCL@freelist.org
新浪微博:北京城市实验室BCL
微信号:beijingcitylab
网址: http://www.beijingcitylab.com
责任编辑:张业成
原文始发于微信公众号(北京城市实验室BCL):数据推荐 | 中国未来人口分布情景分析项目数据