规划问道

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派

推荐阅读,点击查看:
【大咖声音】彭仲仁:跨越学科藩篱,从城市规划到人工智能的思考之旅


Summary of Andrew Ng’s Keynote Speech

吴恩达(Andrew Ng)主题演讲总结


By Zhong-Ren Peng
February 28, 2025

作者简介:彭仲仁

美国佛罗里达大学设计、规划与建造学院适应性规划与设计国际研究中心(iAdapt)


【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
会议现场照片


会议简介:AAAI 2025

AAAI Conference on Artificial Intelligence 由国际先进人工智能协会主办,是人工智能领域的顶级国际学术会议之一,是人工智能领域历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,每年举办一届。当地时间2月25日,第39届 AAAI 2025 在美国宾夕法尼亚州费城举办,会议为期8天,于3月4日结束。


【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
 会议现场照片

Andrew Ng made a keynote speech “AI, Agents and Applications” today (Feb. 28th, 2025), his talk offered an insightful overview of the current landscape and future opportunities in artificial intelligence as of February 2025. Delivered with his characteristic expertise and optimism, Ng outlines a vision for AI’s transformative potential, emphasizing technical trends, the AI ecosystem, and the empowerment of professionals to innovate. Here’s a brief summary.

吴恩达(Andrew Ng)于2025年2月28日在AAAI 2025发表了题为“AI、智能体与应用”的主题演讲,他对截至2025年2月的人工智能(AI)现状和未来机遇进行了深刻的概述。演讲以其一贯的专业性和乐观态度,描绘了AI的变革潜力,强调了技术趋势、AI生态系统以及赋能专业人士创新的重要性。以下为简要总结。

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派

 会议现场照片:

keynote speaker Andrew Ng 吴恩达



1. The AI Stack and Opportunities in Applications
AI 堆栈与应用中的机遇

Ng begins by framing the “AI Stack,” a layered structure of the AI ecosystem, and identifies where the most significant opportunities lie. He argues that while much attention is focused on AI technology—especially foundational models like those from OpenAI, Anthropic, and Meta—the greatest potential for growth and impact is in building AI applications. The stack includes:
吴恩达首先提出了“AI堆栈”的概念,这是一个分层的AI生态系统结构,并指出了其中最具潜力的机会领域。他认为,尽管许多注意力集中在AI技术上(尤其是像OpenAI、Anthropic和Meta等公司的基础模型),但最大的增长和影响潜力在于构建AI应用。这个堆栈包括:

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
吴恩达演讲现场照片

· Semiconductors (e.g., NVIDIA, AMD, Intel): The hardware foundation for AI.

  • 半导体(如NVIDIA、AMD、Intel):AI的硬件基础。


· Cloud (e.g., AWS, Google Cloud, Azure): Infrastructure supporting AI computation.

  • 云计算(如AWS、Google Cloud、Azure):支持AI计算的基础设施。


· Foundational Models (e.g., OpenAI, Anthropic, Meta): Core AI technologies.

  • 基础模型(如OpenAI、Anthropic、Meta):核心AI技术。


· Agentic Orchestration Layer (e.g., LangChain, crewAI, AGi): An emerging layer for coordinating AI agents, highlighted as a new area of innovation.

  • 智能体协调层(如LangChain、crewAI、AGi):一个新兴的创新领域,用于协调AI智能体。


·Applications (e.g., Workhelix, BEARING.ai, meeno): Practical, user-facing AI solutions in diverse industries.

  • 应用(如Workhelix、BEARING.ai、meeno):在各行业中面向用户的实际AI解决方案。


Ng emphasizes that this focus on applications, enabled by a new “agentic orchestration layer,” will drive the future of AI, encouraging developers to build impactful, real-world tools.

吴恩达强调,这种对应用的关注,加上新兴的“智能体协调层”,将推动AI的未来发展,鼓励开发者构建具有实际影响力的工具。



2. Five Key Technical AI Trends

五大关键AI技术趋势


Ng identifies five critical technical trends shaping AI development, each offering opportunities for innovation:

吴恩达指出了塑造AI发展的五个关键技术趋势,每个趋势都为创新提供了机会

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
吴恩达演讲现场照片

·Fast Prototyping: Generative AI enables rapid, efficient creation of AI prototypes, transforming how we innovate. For example, building a text-processing system now takes days with LLMs (specifying a prompt and deploying a model) compared to months with traditional supervised learning. Ng advocates for “moving fast and being responsible,” balancing speed with ethical considerations.
  • 快速原型设计:生成式AI使得快速、高效地创建AI原型成为可能,这改变了我们创新的方式。例如,使用大语言模型构建文本处理系统指定提示并部署模型只需几天,而传统的监督学习方法则需要数月。吴恩达提倡“快速行动并负责任”,在速度与伦理之间取得平衡。


·Voice Stack: Advances in voice AI make it easier to build audio applications, but technical challenges like latency remain. Ng discusses reducing latency in voice interactions—e.g., using pre-responses like “Hmm… let me think” to mask reasoning time—drawing on ongoing work with RealAvatar to enhance real-time conversational AI.
  • 语音堆栈:语音AI的进步使构建音频应用变得更加容易,但仍存在诸如延迟等技术挑战。吴恩达讨论了在语音交互中减少延迟的方法——例如,使用“嗯……让我想想”这样的预设回复来掩盖推理时间,这是依靠与RealAvatar合作改进实时对话AI的持续工作的一部分。


·Visual AI: While text processing has matured, Ng predicts an impending revolution in image processing, enabling new applications in manufacturing, self-driving vehicles, and beyond, leveraging advanced computer vision technologies.
  • 视觉AI:尽管文本处理已经成熟,吴恩达预测图像处理即将迎来一场革命,这场革命将启用先进的计算机视觉技术,在制造业、自动驾驶汽车等领域开辟新的应用。


·Data Gravity is Decreasing: The compute-intensive nature of generative AI workloads makes data transmission costs negligible compared to processing costs, making it feasible to send data to distant locations for processing, enhancing AI flexibility and scalability.
  • 数据重力减弱:生成式AI的计算密集型特性使得数据传输成本相对于处理成本可以忽略不计,这使得将数据发送到远程位置进行处理成为可能,从而增强了AI的灵活性和可扩展性。


·Data Engineering: The importance of managing unstructured data (text, images, video, audio) is rising, as data engineering becomes crucial for supporting AI systems, ensuring high-quality data for effective model training and deployment.
  • 数据工程:随着数据工程成为支持人工智能系统的关键,对于管理非结构化数据(文本、图像、视频、音频)的重要性日益增加,确保高质量的数据用于有效的模型训练和部署。


These trends highlight AI’s rapid evolution, offering a roadmap for developers to capitalize on efficiency, accessibility, and specialization.
这些趋势凸显了人工智能的快速演变,为开发者提供了一个效率、可访问性和专业化的路线图。


3. The Rise of the “10x Professional”
“10倍专业人士”的崛起

【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派
吴恩达演讲现场照片

Ng introduces the concept of “10x professionals,” drawing a parallel to the well-known idea of “10x engineers.” He notes that while 10x engineers are celebrated, other roles like analysts, marketers, and recruiters also have the potential to achieve extraordinary productivity with AI. As AI tools empower more people to build and innovate, Ng predicts a surge in 10x professionals across industries, democratizing high-impact contributions and amplifying human potential.
吴恩达提出了“10倍专业人士”的概念,类比于广为人知的“10倍工程师”。他指出,虽然10倍工程师备受推崇,但分析师、营销人员、招聘人员等其他角色也有潜力通过AI实现非凡的生产力。随着AI工具赋能更多人进行创新,吴恩达预测各行业将涌现出大量10倍专业人士,推动高影响力的贡献并放大人类潜力。


4. Conclusion: A Wonderful Time to Build

结论:这是一个创建的绝佳时机


Ng concludes with an inspiring message: “This is a wonderful time to build!” He encapsulates the optimism of his presentation, emphasizing that the current AI landscape—marked by rapid technological advancements, accessible tools, and significant opportunities in applications—creates an ideal moment for innovation. He encourages developers, researchers, and professionals to leverage these trends responsibly, building transformative AI solutions that drive progress across sectors.

吴恩达以一句鼓舞人心的话结束演讲:“这是一个创建的绝佳时机!”他总结了演讲中的乐观情绪,强调当前AI格局——以快速技术进步、易用工具和应用中的重大机遇为标志——为创新创造了理想时机。他鼓励开发者、研究人员和专业人士负责任地利用这些趋势,创建推动各领域进步的变革性AI解决方案。

Throughout the speech, Andrew Ng combines technical depth with strategic vision, drawing on his expertise as a leading AI figure. His presentation is forward-looking, optimistic, and practical, positioning 2025 as a pivotal year for AI development. By focusing on applications, technical trends, and human empowerment, Ng inspires his audience to embrace AI’s potential while maintaining responsibility, aligning with his broader mission to advance AI for societal benefit, as reflected on his website
(https://www.andrewng.org/).
在整场演讲中,吴恩达结合了技术深度与战略视野,展现了他作为AI领域领军人物的一贯风格。他的演讲具有前瞻性、乐观且务实,将2025年定位为AI发展的关键一年。通过聚焦应用、技术趋势和人类赋能,吴恩达激励听众在保持责任感的同时,拥抱AI的潜力,推动社会进步,正如其个人网站(https://www.andrewng.org/)所体现的使命。


最近有朋友问我们:为什么没有及时看到推文?因为微信改了推送规则,没有点“赞”在看,没有把我们“星标”,都有可能出现这种状况。
“星标”,不迷路!看完文章顺手点点“赞”在看,就可以准时与我们见面了~

原文始发于微信公众号(城市数据派):【前沿】AAAI 2025吴恩达最新演讲总结: AI 未来最大的机遇在哪里?丨城市数据派

赞(0)